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Process mining: The missing link 
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Positioning Process Mining 
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Starting point for process mining:  

Event data 

student name course name exam date mark 

Peter Jones Business Information systems 16-1-2014 8 

Sandy Scott Business Information systems 16-1-2014 5 

Bridget White Business Information systems 16-1-2014 9 

John Anderson Business Information systems 16-1-2014 8 

Sandy Scott BPM Systems 17-1-2014 7 

Bridget White BPM Systems 17-1-2014 8 

Sandy Scott Process Mining 20-1-2014 5 

Bridget White Process Mining 20-1-2014 9 

John Anderson Process Mining 20-1-2014 8 

… … … … 
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case id activity 

name 
timestamp other data 

every row is an event 

(here: an exam attempt) 



Another event log: order handling 

order 

number 

activity timestamp user product quantity 

9901 register order 22-1-2014@09.15 Sara Jones iPhone5S  1 

9902 register order 22-1-2014@09.18 Sara Jones iPhone5S 2 

9903 register order 22-1-2014@09.27 Sara Jones iPhone4S 1 

9901 check stock 22-1-2014@09.49 Pete Scott iPhone5S  1 

9901 ship order 22-1-2014@10.11 Sue Fox iPhone5S  1 

9903 check stock 22-1-2014@10.34 Pete Scott iPhone4S 1 

9901 handle payment 22-1-2014@10.41 Carol Hope iPhone5S  1 

9902 check stock 22-1-2014@10.57 Pete Scott iPhone5S 2 

9902 cancel order 22-1-2014@11.08 Carol Hope iPhone5S 2 

… … … … … … 
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case id 

activity 

name 
timestamp other data resource 



Another event log: patient treatment 

patient activity timestamp doctor age cost 

5781 make X-ray 23-1-2014@10.30 Dr. Jones 45 70.00 

5541 blood test 23-1-2014@10.18 Dr. Scott 61 40.00 

5833 blood test 23-1-2014@10.27 Dr. Scott 24 40.00 

5781 blood test 23-1-2014@10.49 Dr. Scott 45 40.00 

5781 CT scan 23-1-2014@11.10 Dr. Fox 45 1200.00 

5833 surgery 23-1-2014@12.34 Dr. Scott 24 2300.00 

5781 handle payment 23-1-2014@12.41 Carol Hope 45 0.00 

5541 radiation therapy 23-1-2014@13.57 Dr. Jones 61 140.00 

5541 radiation therapy 23-1-2014@13.08 Dr. Jones 61 140.00 

… … … … … … 
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case id 
activity 

name 
timestamp other data 

resource 
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www.olifantenpaadjes.nl 
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600+ plug-ins available covering the 

whole process mining spectrum 
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Quiz Question:   

How to remove behavior? 

PAGE 40 

A

B

C

DE

p2

end

p4

p3p1

start

ABCD 
AED 

ACBD 

ABCD ABCD 

ABCD 
AED ACBD 



Answer: 

Add places or remove transitions 
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Quiz Question:   

How to add behavior? 
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Answer: 

Add transitions or remove places! 

PAGE 43 
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Process discovery algorithms  
(small selection) 
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α algorithm 

α++ algorithm 

α# algorithm 

language-based regions 

state-based regions genetic mining 

heuristic mining 

hidden Markov models 

neural networks 

automata-based learning 

stochastic task graphs 

conformal process graph 

mining block structures 

multi-phase mining 
partial-order based mining 

fuzzy mining 

LTL mining 

ILP mining 

distributed genetic mining 

ETM genetic algorithm 
Inductive Miner (infrequent) 



Language based regions 
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YX

Region R = (X,Y,c) corresponding to place pR: X = {a1,a2,c1} = 

transitions producing a token for pR, Y = {b1,b2,c1} = transitions 

consuming a token from pR, and c is the initial marking of pR. 



Basic idea: enough tokens should be 

present when consuming 
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A place is feasible if it 

can be added without 

disabling any of the 

traces in the event log. 



Process mining is about connecting things 

• Data – Process 

• Business – IT 

• Business Intelligence – Business Process Management 

• Performance – Compliance 

• Runtime – Design time 

• … 
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Processes are not just about control-

flow! 
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control-flow 
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Process mining spectrum 

• Online and offline (near 

realtime). 

• All perspectives. 

• De facto models are 

descriptive/predictive.  

• De jure models are 

normative/prescriptive. 

• Process discovery is just 

one element: Aligning 

model and reality is the 

key thing. 
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process cubes 



Process discovery is like applying 

a function 
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(freq., sum, variance, mode, …) 

(alpha, heuristic, fuzzy, social, 

dotted, compliance, etc., etc.) 



2 dimensions: model = number 
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Process models are computed on two 

dimensional event data 
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What are the differences? 
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Example: Hertz has 8,650 rental locations 

and different types of customers  
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Example: All Dutch municipalities need 

to handle building permits 
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>100k 

50k 

>50k & 100k 

10 Dutch 

municipalities 



Example: Suncorp has different brands 

and different types of insurance 
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Example: students watching recorded 

video lectures and making exams 
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Process Cubes (OLAP for processes) 
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Overview data for a particular course 
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every horizontal line 
corresponds to a 

student (287 students)

a red dots refers to an 
exam attempt

course instance 
running from January 

2011 until August 2011

a non-red dots refers to a student 
viewing a particular lecture (each 

lecture has a unique color) 

time runs from left to 
right (period of 

approximately 3 years)each dot refers to 
an event (6744 
events in total)



Drilling-down into a course instance 
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Comparing processes 
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Fitness of event 

log wrt idealized 

model is 0.37 

Fitness of event 

log wrt idealized 

model is 0.28 



Overview of approach 

PAGE 63 

event data

process cube

event logs 
(per cell)

1

2

3

discovered models (per cell)

normative models

5

4

6

7

1. Store events in the 

process cube. 

2. Materialize the events 

in a cell as an event log 

that can be analyzed. 

3. Automatically discover 

models per cell (e.g., a 

BPMN or UML model).  

4. Check conformance by 

replaying event data on 

normative (process) 

models. 

5. Compare discovered 

models and normative 

models. 

6. Compare discovered 

models corresponding 

to different cells. 

7. Compare different 

behaviors by replaying 

event data of one cell 

on another cell's model. 



 

splitting event logs 
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data 
Big data 

Star Trek 



What if? 
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Decompose event log!  
vertical or horizontal 
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Vertical distribution I:  

Split cases arbitrarily 
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Vertical distribution II:  

Split cases based on a specific feature 
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Horizontal distribution 
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Horizontal distribution: The key idea 
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Two foundational ways of spitting event 

data: horizontal or vertical 
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decomposed  

process mining 



Decomposing Conformance Checking 
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SN
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L
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technique
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check

Mn
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Ln
sublog
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check

conformance diagnostics

decompose 
model

decompose 
event log

e.g., maximal decomposition, passage-based 
decomposition, or SESE/RPST-based decomposition

e.g., A* based alignments, token-based replay, or 
simple replay until first deviation

yields a (valid) activity partitioning

See "divide and conquer" 

framework by Eric Verbeek. 



Example of a valid decomposition 
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Example of an alignment for observed 

trace a,b,c,d,e,c,d,g,f 
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Conformance checking can be 

decomposed !!! 

• General result for any valid decomposition: Any 

event log or trace is perfectly fitting the overall 

model if and only if it is also fitting all the individual 

fragments 
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Wil van der Aalst, Decomposing Petri nets for process mining: 

A generic approach. Distributed and Parallel Databases, 

Volume 31,  Issue 4, pp 471-507, 2013 



Example  
(work with Jorge Munoz-Gama and Josep Carmona) 
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Decomposing Process Discovery 
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discovery

M2
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compose 
model

decompose 
event log

discovery discovery

e.g., causal graph based on frequencies is 
decomposed using passages or SESE/RPST

e.g., language/state-based region discovery, 
variants of alpha algorithm, genetic process mining

yields a (valid) activity partitioning

See "divide and conquer" 

framework by Eric Verbeek. 



 

conclusion 
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Event data is everywhere! 

Process are everywhere! 

Why not connect them? 

Process mining! 

Challenges: 

• comparative process mining 

• Big event data, Big processes 



Process Mining: Data Science in Action 
https://www.coursera.org/course/procmin 

data 
mining

process
mining

visualization

data 
science

behavioral/
social

sciences

domain
knowledge

machine 
learning

large scale 
distributed
computing

statistics industrial
engineering

databases

business 
process 

intelligence

stochastics

privacy

algorithms

visual 
analytics

First Massive Open 

Online Course (MOOC) 

on Process Mining 
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www.processmining.org 
 

www.win.tue.nl/ieeetfpm/ 


